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ABSTRACT

This paper discusses issues related to the inherent ambiguity of the composite hypothesis testing problem, a
problem that is central to the detection of target signals in cluttered backgrounds. In particular, the paper
examines the recently proposed method of continuum fusion (which, because it combines an ensemble of clair-
voyant detectors, might also be called clairvoyant fusion), and its relationship to other strategies for composite
hypothesis testing. A specific example involving the affine subspace model adds to the confusion by illustrating
irreconcilable differences between Bayesian and non-Bayesian approaches to target detection.
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“Joe Lightcap was not a philosopher; he took ideas seriously.”
—Edward Abbey, The Fool’s Progress

1. INTRODUCTION

The composite hypothesis testing problem is one of the great unsolved problems of statistics – but it is not un-
solved because it is particularly hard; it is unsolved because it is fundamentally ambiguous. It is also enormously
useful: it lies at the core of what it means to do science, and provides an excellent framework for doing target
detection in multispectral imagery. While some of the ambiguities that arise in composite hypothesis testing are
naturally modeled with probability, others appear to be more difficult. are more difficult. These difficulties are
in some ways more philosophical than they are mathematical, but we are not philosophers, so we will do what
we can with mathematics.

For simple hypothesis testing, the aim is to distinguish which of two hypotheses is most consistent with
observed data. This problem is straightforward, and unambiguously optimal solutions can be expressed in terms
of likelihood ratios.

It gets confusing (or composite) when the aim instead is to distinguish between two families of hypotheses.
The clairvoyant solution chooses a single member from each family and then uses the the ratio of their likelihoods.
Although the clairvoyant solution isn’t very useful by itself (since, by the very statement of the problem, there’s
no way to know which member to choose), it provides a valuable building block for constructing more effective
solutions to the composite hypothesis testing problem.

The generalized likelihood ratio (GLR) has long been the workhorse solution for composite hypothesis testing
problems, and for good reason: it is straightforward, unambiguous, and quite general. But it is not the only
solution, and (except for a very few cases) it is not the optimal solution.

Recently, a new mathematical approach, called continuum fusion, was suggested as a way to address the
composite hypothesis testing problem.1–10 This new approach generalizes the GLR (thus making it an “even
more generalized” likelihood ratio), yet retains its min-max approach. This paper will attempt to make some
mathematical observations about continuum fusion, but its main contribution will be to suggest a colorful new
name – “clairvoyant fusion” – which shares the same acronym (CF) and more incisively describes the fusion
process.

E-mail: jt@lanl.gov
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Our interest is in detecting targets that are small or weak or rare (in short, that are difficult to detect) in
backgrounds that are large and cluttered. In the statistical hypothesis testing framework, two hypotheses are
considered: the “null” hypothesis Ho is that there is no target, while the “alternative” H1 says that a target is
present. From a measurement x, the task is to choose between Ho and H1. More generally, a detector is a binary
function† B(x) whose value (0 or 1) specifies the choice of hypothesis for each x. There are two kinds of errors
that can be made: if there is no target but B(x) = 1, that is a false alarm; if a target is present but B(x) = 0,
that is a missed detection.

Many detectors are implemented in terms of a real-valued function T (x) which characterizes the “target-
ness” corresponding the measurement x. A larger T (x) generally indicates more confidence that there is a target
where x was measured. By comparing this function to a threshold, one obtains a detector. This can be written
B(x) = {T (x) ≶ λ}, where the ‘≶’ symbol corresponds to the notion that when T (x) < λ, then B(x) = 0 and x
is declared a background element; and when T (x) > λ, then B(x) = 1 and x is declared a target.‡

2. SIMPLE HYPOTHESIS TESTING

When both the target and the background are drawn from known distributions – call them pt(x) and pb(x),
respectively – the analysis is straightforward. The false alarm rate Pfa corresponds to the fraction of background
pixels which are declared targets, and the detection rate is the fraction of actual target pixels which are declared
targets; that is:

Pfa =

∫
B(x)pb(x) dx; and Pd =

∫
B(x)pt(x) dx. (1)

In comparing two detectors, we can say that one is more powerful than the other if its Pd is larger than the
other’s Pfa, while its Pfa is at least as small as the other’s Pfa.

For the simple hypothesis testing problem, there is an optimal detector that is more powerful than all others;
this detector is given by the likelihood ratio (LR).

TLR(x) =
pt(x)

pb(x)
≶ λ. (2)

That the likelihood ratio is optimal is known as the Neyman-Pearson theorem; Kay’s book12 gives a nice demon-
stration of this optimality, while Theorem 3.2.1 in Lehmann and Romano’s book11 provides a more formal
proof.

Generically, this optimum is unique; that is, if two detectors are both optimal, they are generally identical.
Exceptions can arise if the set {x : TLR(x) = λ} has nonzero measure, but we will (in most cases, safely) assume
that this never happens.

That this simple case can be optimized exactly only means the the uncertainty is minimized, not that it is
eliminated. Given x, we can make an unambiguously “best” guess, but we cannot be certain that it is correct.

3. COMPOSITE HYPOTHESIS TESTING

In the composite hypothesis testing problem, we are not only uncertain (probability can take care of that), we
are confused. We do not have a single target distribution and a single background distribution. Instead, we have
families of distributions for the target and/or background. We parameterize these families with θt ∈ Θt and
θb ∈ Θb respectively. That is, pt(x; θt) is the distribution on x when the target is present, and pb(x; θb) is the
distribution when the target is absent. The problem is that the parameters, θt and/or θb, upon which the target
and/or background distributions depend, are themselves unknown.

†In more sophisticated treatments,11 the function is real-valued and varies from 0 to 1; it is treated as the probability of
labeling x a target. This is not to be confused with the probability of x being a target. Generically, and for the examples in
this paper, the set of x for which the detector is non-deterministic is of measure zero, so the more sophisticated treatment
is not necessary.

‡The case when T (x) = λ provides yet another source of confusion, but it can be dealt with in an elegant and consistent
way that is left to the professionals11 (and hinted at in the previous footnote).
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For any given (θt, θb), we can characterize the performance of detectors using the definitions of false alarm
rate and detection rate in Eq. (1), but those rates will depend on the unknown parameters.

Pfa(θb) =

∫
B(x)pb(x, θb) dx; and Pd(θt) =

∫
B(x)pt(x, θt) dx, (3)

For given parameter values (θt, θb), we can use the definition in the previous section to say that one detector is
more powerful than another. A stronger statement can be made if this comparison holds for all parameter values.
In particular, one detector is said to be uniformly more powerful than another if it is at least as powerful as the
other for every parameter value, and strictly more powerful for at least one parameter value. Regardless of what
parameters (θt, θb) end up being appropriate, a uniformly more powerful detector is unambiguously preferable.
The holy grail of composite hypothesis testing is to find the detector that is uniformly most powerful (UMP).11,12

In many practical situations, however, no such UMP detector even exists. In these situations, when UMP is
too much to ask for, we can make a more modest request, and ask of a detector that it at least is not uniformly
less powerful than some other detector. A detector is admissible if is is not dominated by any other detectors;
that is to say, there is no detector that is uniformly more powerful than an admissible detector.11 For a given
problem, there can be many distinct admissible detectors, no one of which is unambiguously superior to (i.e.,
uniformly more powerful than) any other one. Which is “best” will depend on the operational requirements of
the problem at hand, but in searching for this best detector, it makes sense to restrict the search to admissible
detectors.

3.1 Clairvoyant detector

In the unrealistic case where one is given† the values of θt and θb, one can write the optimal detector in terms
of the likelihood ratio:

T (x; θt, θb) =
pt(x; θt)

pb(x; θb)
≶ λ. (4)

This special detector, which depends on a priori knowledge of the parameter values, is called the “clairvoyant”
detector.12

For composite hypothesis testing, these parameters are by definition not known. Nonetheless, we will find
the clairvoyant detector to be a useful concept for building detectors that one could actually use in a composite
hypothesis testing problem. Also, we find that some clairvoyant detectors, even though they are optimal only
for only for a specific (θt, θb), are nonetheless reasonable over the whole range of Θt and Θb.

As a general rule, specific clairvoyant detectors are admissible. Since the clairvoyant detector is optimal at its
specific value of (θt, θb), any candidate for a uniformly more powerful detector would have to be at least equally
in power to the clairvoyant detector at the specific (θt, θb), but since optimal detectors are generically unique,
the other detector would then be identical to the clairvoyant detector.

In particular, if a composite hypothesis testing problem admits a UMP detector, then it will be equivalent to
each of the clairvoyant detectors, which furthermore means that the clairvoyant detectors will all be equivalent
to each other.

Another way to say that is: if two clairvoyant detectors are distinct, then the composite hypothesis testing
problem does not admit a UMP solution. This is usually the situation with composite hypothesis testing.

3.2 Bayesian likelihood ratio

The Bayesian likelihood ratio (BLR)12–14 takes the philosophical position that the confusion in θt and θb in fact
can be modeled with probability.

†e.g., by some all-knowing crystal ball
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The BLR employs priors for the θt and θb parameters; call them πt(θt) and πb(θb). It uses those priors
to “marginalize out” θt and θb and to obtain posterior probabilities that do not involve these parameters.
Specifically:

pBayes
t (x) =

∫
Θt

pt(x; θt)π(θt) dθt, (5)

pBayes
b (x) =

∫
Θb

pb(x; θb)π(θb) dθb. (6)

In terms of these posterior probabilities, we can employ a standard likelihood ratio:

TBLR(x) =
pBayes
t (x)

pBayes
b (x)

=

∫
Θt

pt(x; θt)πt(θt) dθt∫
Θb

pb(x; θb)πb(θb) dθb

≶ λ. (7)

As an aside, we remark that the priors on θt and θb need not be independent. Given a prior on both of the
parameters, π(θt, θb), we use πt(θt) =

∫
Θb
π(θt, θb) dθb and similarly for πb(θb) in Eq. (7).

3.3 Generalized likelihood ratio (GLR) test

The most common non-Bayesian approach (and probably the most common approach, period) is the generalized
likelihood ratio (GLR).12

TGLR(x) =
max
θt∈Θt

pt(x; θt)

max
θb∈Θb

pb(x; θb)
≶ λ. (8)

One interpretation of the GLR is that θt and θb are effectively re-estimated from each data element x using
maximum likelihood:

θ̂t(x) = argmaxθt∈Θt
pt(x; θt) (9)

θ̂b(x) = argmaxθb∈Θb
pb(x; θb) (10)

and then

TGLR(x) = T (x; θ̂t(x), θ̂b(x)) =
pt(x; θ̂t(x))

pb(x; θ̂b(x))
≶ λ. (11)

Thus the GLR is like the clairvoyant detector except that instead of knowing the parameter values θt and θb,
one estimates them from the measurement x, using maximum likelihood.

Note that whereas the BLR requires the user to specify prior distributions for the unknown parameters, the
GLR is a recipe that can be followed without thinking, and it produces an unambiguous result. What we have
lost in flexibility and mathematical clarity, we have gained in simplicity.

It is natural to ask whether the GLR is just a special case of the BLR. Schaum13,14 provides examples in
which the GLR solution can be derived from the BLR formalism, and argues that this provides insight into what
the GLR is optimizing. He also describes the ULR (uniform likelihood ratio); this is the special case of the BLR
with flat priors: π(θ) constant. But it is not always possible to express the GLR in terms of the BLR; Section 4.2
provides an example where there are no priors that could be used to produce the GLR solution from the BLR
formalism.
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3.4 Clairvoyant fusion

A generalization of the GLR was proposed by Schaum.1 To motivate it, I will (following later work by Schaum3–5

and Bajorski9,10) write the GLR as a min-max optimization over the clairvoyant detectors:

TGLR(x) =
max
θt∈Θt

pt(x; θt)

max
θb∈Θb

pb(x; θb)
= min
θb∈Θb

max
θt∈Θt

pt(x; θt)

pb(x; θb)
= min
θb∈Θb

max
θt∈Θt

T (x; θt, θb) ≶ λ. (12)

For standard GLR, the statistic TGLR(x) is compared to a threshold λ that is fixed. The clairvoyant fusion idea
is to make λ depend on the parameters θt and θb, but this requires that the threshold be brought “inside” the
min-max operator:

TCF(x) = min
θb∈Θb

max
θt∈Θt

T (x; θt, θb)/λ(θt, θb) ≶ 1. (13)

If we restrict consideration to functions that are separable in terms of the target and background parameters†

– i.e., λ(θt, θb) = λoλb(θb)/λt(θt) – then we can write

p′t(x; θt) = pt(x; θt)λt(θt) (14)

p′b(x; θb) = pb(x; θb)λb(θb) (15)

and in terms of these scaled (or “penalized”) likelihoods, clairvoyant fusion

TCF(x) =
max
θt∈Θt

p′t(x; θt)

max
θb∈Θb

p′b(x; θb)
≶ λo, (16)

looks like the ordinary GLR. This approach also goes by the name penalized likelihood ratio.15,16

If we interpret the scaling factors in terms of priors, π(θ) ∝ λ(θ), then

TCF(x) =
max
θt∈Θt

pt(x; θt)πt(θt)

max
θb∈Θb

pb(x; θb)πb(θb)
≶ λo, (17)

which looks like BLR, but without the integrals.‡

Different strategies for choosing λ(θt, θb) are called flavors.1 The (informal) interpretation of those functions
in terms of priors on θt and θb may provide some guidance to that choice. As with Bayesian priors, however, we
may be giving the user more flexibility than the user knows what to do with. Just as choosing priors opens a
Pandora’s box of possibilities, so also might choosing flavors.

But at least two of the clairvoyant fusion flavors (CF-cfar and CF-cpd) are fully prescriptive. Like the
GLR, they do not require any subjective choices to be made by the users. They are in practice a little more
complicated to implement than the GLR (although efficient algorithms have been suggested17), but they provide
genuine unambiguous alternatives.

3.4.1 CF-cfar and CF-cpd flavors

One of the clairvoyant fusion flavors that is worth calling out specifically merges detectors with constant false
alarm rate. Here λ(θt, θb) is chosen so that the associated clairvoyant detector has a given false alarm rate α.
Specifically,

λ(θt, θb, α) = min
λ

s.t.

∫
T (x;θt,θb)>λ

pb(x, θb) dx ≤ α. (18)

†For example, the L3R model of Schaum and Daniel4,8 is of this form.
‡Of course, without the integrals, it’s not BLR.
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Given this expression for λ, the binary detector takes the form

BCF(x, α) =

{
min
θb∈Θb

max
θt∈Θt

T (x, θt, θb)/λ(θt, θb, α) ≶ 1

}
. (19)

Schaum has shown how this implicit integral condition can be re-expressed in terms of partial differential equa-
tions.1 And in some cases, analytical expressions can be found.1 In general, however, Eq. (18) does not permit
a simple solution. Further, although the individual detectors have been calibrated to have individual false alarm
rates of α, the false alarm rate for the fused detector will be larger than that. To produce a CF detector with a
specified false alarm rate, it is generally a matter of trial and error to find the α that leads to this specified rate.

The natural counterpoint to the CF-cfar flavor is one based on Pd instead of Pfa. In this case,

λ(θt, θb, β) = max
λ

s.t.

∫
T (x;θt,θb)>λ

pt(x, θt) dx ≥ β (20)

ensures that the fused decision rules all have a detection rate of β.

3.4.2 Formulation based on monotonic recalibration

Another way to think about the fusion suggested by Eq. (13), for instance, is to observe that just as T (x; θt, θb) is
a clairvoyant statistic, so is T (x; θt, θb)/λ(θt, θb); thus Eq. (13) is still a min-max operator applied to clairvoyant
detectors. But now consider the scalar function h(z, θt, θb) that is monotonic in its first argument: i.e., z1 > z2

implies h(z1, θt, θb) > h(z2, θt, θb). Then it is clear that T ∗(x; θt, θb) = h(T (x; θt, θb), θt, θb) is a clairvoyant
statistic. One can then fuse this family of clairvoyant statistic to obtain:

TCF(x) = min
θb∈Θb

max
θt∈Θt

T ∗(x; θt, θb) (21)

= min
θb∈Θb

max
θt∈Θt

h (T (x; θt, θb), θt, θb) . (22)

Although this generalized formulation provides new functions TCF(x), and this can in turn be used to develop
efficient implementation for CF-cfar and CF-cpd flavors, it does not actually produce any new decision rules.17

4. ADMISSIBILITY OF HYPOTHESIS TESTING STATISTICS

4.1 Special case of the affine subspace model

Introduced in Ref. [18], the affine subspace model is similar to the additive target model, but with a nonzero
offset.

Ho : xb ∼ pb(x) (23)

H1 : xt = xb + so + θts ∼ pt(x) = pb(x− so − θts) (24)

Here so and s are known, but θt is unknown. Often there is a bound on permissible values of θt; and by
appropriate choice of so and s, we can rescale those bounds to −1 ≤ θt ≤ 1.

We will consider a special case of the affine subspace model, illustrated in Fig. 1. Here, the composite
alternative (target) hypothesis has only two members; specifically, we will take θt ∈ Θt = {±1}. We will
furthermore consider a two-dimensional space, with x = (x, y)T , and with so = (0, 1)T and s = (1, 0)T . Finally,
we will take pb(x) to be two-dimensional Gaussian centered at the origin, and so pt(x; θt) is a Gaussian centered
at (θt, 1).

Proc. SPIE 8390 (2012) 839003-6



(a) Target 1: θt = +1 (b) Target 2: θt = −1

Figure 1. Special case of the affine subspace model. In this model, the composite alternative hypothesis has only two
components, shown in (a) and (b). In both cases, the null hypothesis is a unit Gaussian centered at the origin. The
alternative hypothesis is a Gaussian centered at (θt, 1) where θt ∈ {−1,+1}.

4.2 GLR is not a special case of BLR

For this special case of the affine subspace model, we can explicitly write the two clairvoyant statistics:

T (x,+1) =
pt(x, y; +1)

pb(x, y)
=

exp(−((x− 1)2 + (y − 1)2))/2)

exp(−(x2 + y2)/2)
= exp(y + x− 1) (25)

T (x,−1) =
pt(x, y;−1)

pb(x, y)
=

exp(−((x+ 1)2 + (y − 1)2))/2)

exp(−(x2 + y2)/2)
= exp(y − x− 1) (26)

from which it follows that

TGLR(x, y) = max
θt∈{±1}

exp(y + θtx− 1) = exp(y + |x| − 1). (27)

Equivalently, TGLR(x, y) = y + |x|. Meanwhile, the Bayesian solution is given by

TBLR(x, y) = π+ exp(y + x− 1) + π− exp(y − x− 1) (28)

where π+ and π− are the prior probabilities assigned to the two targets. Equivalently, TBLR(x, y) = y +
log (π+ exp(x) + π− exp(−x)). Because the alternative hypothesis has only two components, this encompasses
all Bayesian solutions. It is clear that there is no choice of prior for which π+, π− is TBLR equivalent to TGLR.

Informally, the difference between TGLR and TBLR is the difference between the “maximum” and the “average.”
It is also – as seen in Fig. 2(a) – the difference between cuspy contours and smooth contours. Further, as seen
in Fig. 2(b), the BLR statistic (at π+ = π− = 1/2) is more powerful than the GLR statistic.

4.3 Inadmissibility of clairvoyant fusion

This shows that GLR is not a special case of BLR, but we know that it is a special case of CF. More generally,
specifying the function λ(θt) amounts to choosing two scalars: λ(+1) = λ+, and λ(−1) = λ−. In this case,

TCF(x, y) = y + log(max(λ+ exp(x), λ− exp(−x))). (29)

If we let xo = log(λ−/λ+)/2, then we can write the equivalent detector

TCF(x, y) = y + |x− xo| (30)
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Figure 2. Comparison of BLR and GLR performance for the two-target problem in Section 4.1. (a) In the x-y plane, 104

data points are shown for the null hypothesis, along with the three detectors, each calibrated for a false alarm rate of
Pfa = 0.05. The clairvoyant detector has the advantage of knowing which of the two alternative distributions is active.
(b) We see that BLR (solid) and GLR (dashed) are both dominated by the clairvoyant detector (thin solid), which is a
matched filter that “knows” which of the two targets is active. We also see that although the BLR and GLR have nearly
equal performance, the BLR detector is slightly better, and in particular, is better over the whole range of the ROC curve.
The dotted curve shows the difference in Pd of BLR minus GLR (what is plotted is 50× that difference); the difference
is small but nonnegative. This plot is based on numerical estimates from a sample of a ten million (107) points in both
the background and the target.

The asymmetry given by xo 6= 0 represents a preference for one of the targets over the other (either because
one target is more common than the other, or because detecting one is more valuable than detecting the other).
Note, however, that CF-cfar and CF-cpd both retain the symmetry given by xo = 0 and so for this problem are
equivalent to the GLR solution.

For this example, neither the set of BLR statistics (parameterized by π+ and π−) nor the CF statistics
(parameterized by λ+ and λ−) are subsets of the other; in fact, the only overlap is at the extremes, which
correspond to the two clairvoyant statistics.

Fig. 3 compares the performance of CF and BLR by plotting a measure of performance (Pd at Pfa = 0.05)
for each of the two targets on the two axes. The unambiguous GLR is a single point on the plot, and the CF
curve passes through that point. This plot shows, as did Fig. 2(b), that GLR is dominated by a BLR solution;
but it also shows that for every CF detector (i.e., for every point on the CF curve), there is a BLR detector
(i.e., a point on the BLR curve) that outperforms it. And it outperforms the CF detector on both targets.

Thus, for this problem, the GLR detector is not admissible. Further (and this is the bad news), clairvoyant
fusion doesn’t fix the problem. Because the alternative hypothesis class only has two members, we can enumerate
all of the clairvoyant fusion detectors, and for every one of them, there is a BLR detector that is uniformly more
powerful.

This example illustrates two more general principles, described by Lehmann and Romano11 and attributed to
Wald.19 One is that all BLR detectors are admissible, and two is that all admissible detectors can be expressed
as BLR detectors for some prior (or else can be formed from a limiting process of BLR detectors). If our aim
is to optimize the performance of a detector for our particular operational requirements, this says that we can
restrict our search to BLR detectors.
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Figure 3. Comparison of BLR and GLR and CF performance for the two-target problem in Section 4.1. Note that both
plots show the same data, but (b) is a inset of (a). There are two targets and we do not know which target is present,
assuming a target is present at all. The horizontal axis plots the performance against Target 1, and the vertical axis plots
the performance against Target 2. As we alter our choice of prior in the BLR, the performance traces out a curve. A
prior that is weighted toward Target 1 will get better performance on Target 1, but correspondingly poorer performance
on Target 2. The GLR is a single point in this curve and gets equal performance on Target 1 and Target 2, but achieves
lower performance than BLR. The CF performance (which includes GLR as a special case) depends on the choice of xo
Eq. (30), and it traces out a curve whose performance is dominated by the BLR curve. The clairvoyant performance is
optimal if one knows which target one is looking for (and dreadful if one guesses incorrectly).

5. CONCLUSIONS

Composite hypothesis testing is an inherently ambiguous (ergo confusing) pursuit. By treating this ambiguity as
something that can be modeled by probability distributions, the BLR provides a mathematically rigorous solution.
But it is a solution that requires the practitioner to put quantitative priors on that subjective ambiguity. As
a practical matter, the venerable GLR offers a simpler way to deal with the ambiguity: there is only one GLR
detector, and the formulation for producing it is straightforward. But there are no guarantees of optimality for
the GLR, and if it produces an unsatisfactory detector, there isn’t much one can do about it.

Clairvoyant fusion provides an intriguing alternative that includes GLR as a special case. There are some nice
examples where clairvoyant fusion provided a detection that GLR missed,8 or a simple formula for a problem in
which GLR’s solution was intractable.6 And in a model that has a UMP solution, the CF-cfar detector retrieved
it in its entirety, whereas the GLR detector failed in the Pfa > 0.5 regime.4 These illustrate the potential utility
of a method that is not always optimal, and in at least one case, is not even admissible.

What is the future of CF? I am not clairvoyant, but where there is confusion there is curiosity, and I am
confident that the composite hypothesis testing problem will continue to engage the research interests of the
community. And that better detectors of difficult targets will result from this research.
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